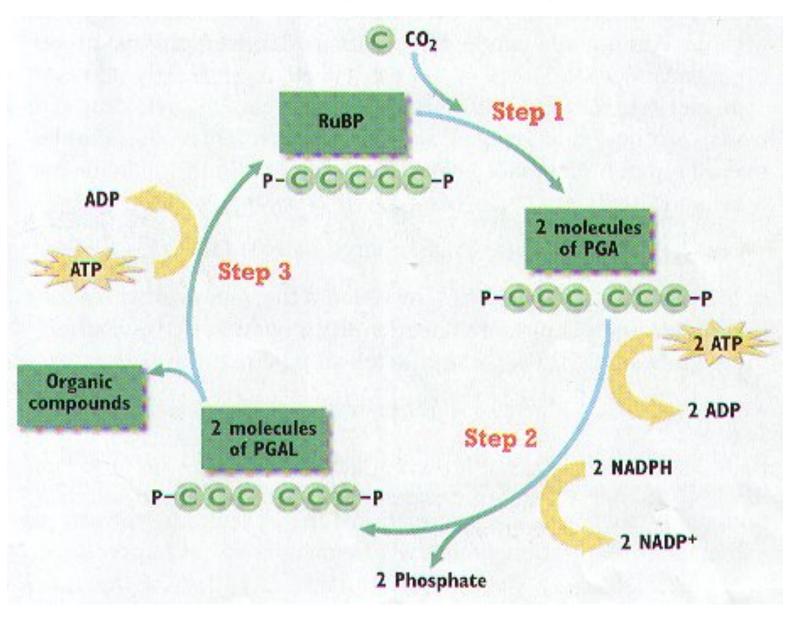
The Calvin Cycle

Section 6.2


Carbon Fixation by the Calvin Cycle

- Second set of reaction in photosynthesis involves a biochemical pathway known as the *Calvin Cycle*
 - Pathway produces organic compounds, using energy stored in ATP and NADPH from the light reactions
 - Named after Melvin Calvin

Carbon Fixation by the Calvin Cycle

- Atoms from CO₂ are bonded or "fixed" into organic compounds
- Incorporation of CO₂ into organic compounds is known as carbon fixation

Calvin Cycle's 3 steps

3 major steps to Calvin Cycle

Occurs within the stroma of the chloroplast

STEP 1:

- CO₂ diffuses into the stroma from the surrounding cytosol
- Enzyme combines a CO₂ molecule with a fivecarbon carbohydrate called RuBP
- Product is a six-carbon molecule that splits immediately into a pair of three-carbon molecules known as PGA

STEP 2:

- PGA is converted into another three-carbon molecule called PGAL in a 2-part process:
 - 1.) each PGA molecule receives a phosphate group from a molecule of ATP.
 - 2.) The resulting compound then receives a proton from NADPH and releases a phosphate group producing PGAL
- In addition to PGAL, these reactions produce ADP, NADP⁺ and phosphate

STEP 3:

- Most of the PGAL is converted back into RuBP in a complicated series of reactions.
- Require a phosphate group from another molecule of ATP, which is changed into ADP.
- By regenerating the RuBP that was consumed in Step 1, the reactions of Step 3 allow the Calvin Cycle to continue
- Some PGAL molecules are not converted into RuBP

 they leave the Calvin Cycle and can be used by
 the plant to make other organic compounds

Balance Sheet for Photosynthesis

- Each turn of the Calvin Cycle fixes one CO₂
 molecule...since PGAL is a three-carbon compound, it
 takes three turns of the cycle to produce each
 molecule of PGAL.
- For each turn of the cycle 2 ATP, and 2
 NADPH molecules are used in Step 2, and 1 ATP molecule used in Step 3
 - Therefore 3 turns of the Calvin cycle uses 9 molecules of ATP and 6 molecules of NADPH

 Simplest overall equation for photosynthesis, including both the light reactions and the Calvin Cycle can be written as:

$$CO_2 + H_2O + light energy \rightarrow (CH_2O)_n + O_2$$

The (CH₂O) represents the general formula for a carbohydrate.

Alternative Pathways

- Plant species that fix carbon exclusively through the Calvin Cycle are known as C3 plants because of the three-carbon compound PGA that is initially formed
- Other plant species fix carbon through alternative pathways and then release it to enter the Calvin Cycle

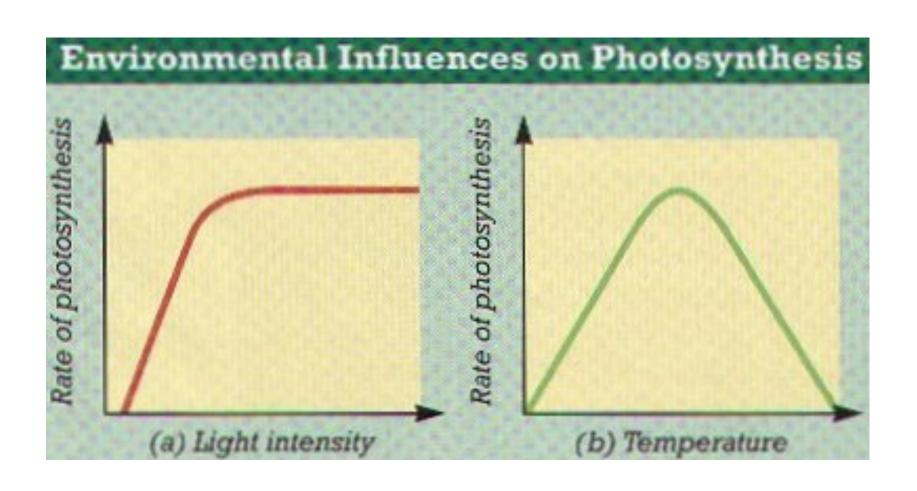
- Most of the water loss from a plant occurs through small pores called stomata which are usually located on the undersurface of leaves
- Stomata are the major passageways through which
 CO₂ enters and O₂ leaves a plant
- When stomata are partly closed, the level of CO₂ in the plant falls as CO₂ is consumed in the Calvin cycle
- At the same time, the level of O_2 in the plant rises as the light reactions split water and generate O_2

C₄ Pathway

- Allows certain plants to fix CO₂ into FOUR-Carbon Compounds.
 - Such plants lose only about half as much water as C₃ plants when producing the same amount of carbohydrates
- During the hottest part of the day, C4 plants have their stomata partially closed.
- C₄ plants include corn, sugar cane and crabgrass.

The CAM Pathway

- They fix carbon through a pathway called CAM.
 - Plants that use the CAM Pathway by opening their Stomata at night and Closing it during the day, the opposite of what other plants do.
 - At night, CAM plants take in CO₂ and fix it into organic compounds.
 - During the day, CO₂ is released from these compounds and enters the Calvin Cycle.
 - Because CAM Plants have their Stomata open at night, they grow very slowly, But they lose less water than C₃ or C₄ plants.


3 things affecting Photosynthesis

- 1. <u>LIGHT INTENSITY</u> One of the most important. As light intensity INCREASES, the rate of photosynthesis initially INCREASES and then levels off to a plateau
- 2. . CO2 LEVELS AROUND THE PLANT Increasing the level of CO₂ stimulates photosynthesis until the rate reaches a plateau

3 things affecting Photosynthesis

3. <u>TEMPERATURE</u> - Raising the temperature ACCELERATES the Chemical Reactions involved in Photosynthesis.

The rate of Photosynthesis generally PEAKS at a certain temperatures, and photosynthesis begins to decrease when the temperature is further increased

